Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development.
نویسندگان
چکیده
We have applied multiple-site optical recording of transmembrane potential changes to recording of neuronal pathway/network activity from embryonic chick spinal cord slice preparations. Spinal cord preparations were dissected from 8-day-old chick embryos at Hamburger-Hamilton stage 33, and transverse slice preparations were prepared with the 13th cervical spinal nerve or with the 2nd or 5th lumbosacral spinal nerve intact. The slice preparations were stained with a voltage-sensitive merocyanine-rhodanine dye (NK2761). Transmembrane voltage-related optical (dye-absorbance) changes evoked by spinal nerve stimulation with positive square-current pulses using a suction electrode were recorded simultaneously from many loci in the preparation, using a 128- or 1,020-element photodiode array. Optical responses were detected from dorsal and ventral regions corresponding to the posterior (dorsal) and anterior (ventral) gray horns. The optical signals were composed of two components, fast spike-like and slow signals. In the dorsal region, the fast spike-like signal was identified as the presynaptic action potential in the sensory nerve and the slow signal as the postsynaptic potential. In the ventral region, the fast spike-like signal reflects the antidromic action potential in motoneurons, and the slow signal is related to the postsynaptic potential evoked in the motoneuron. In preparations in which the ventral root was cut microsurgically, the antidromic action potential-related optical signals were eliminated. The areas of the maximal amplitude of the evoked signals in the dorsal and ventral regions were located near the dorsal root entry zone and the ventral root outlet zone, respectively. Quasiconcentric contour-line maps were obtained in the dorsal and ventral regions, suggesting the functional arrangement of the dorsal and ventral synaptic connections. Synaptic fatigue induced by repetitive stimuli in the ventral synapses was more rapid than in the dorsal synapses. The distribution patterns of the signals were essentially similar among C13, LS2, and LS5 preparations, suggesting that there is no difference in the spatiotemporal pattern of the neural responses along the rostrocaudal axis of the spinal cord at this developmental stage. In the ventral root-cut preparations, comparing the delay times between the ventral slow optical signals, we have been able to demonstrate that neural network-related synaptic connections are generated functionally in the embryonic spinal cord at Hamburger-Hamilton stage 33.
منابع مشابه
Optogenetic Regulation of Leg Movement in Mid-stage Chick
22 Numerous disorders that affect proper development, including the structure and 23 function of the nervous system, are associated with altered embryonic movement. 24 Ongoing challenges are to understand in detail how embryonic movement is generated 25 and to better understand the linkage between proper movement and normal nervous 26 system function. Controlled manipulation of embryonic limb m...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملRNA-Seq analysis of differential gene expression in electroporated chick embryonic spinal cord.
In ovo electroporation of the chick neural tube is a fast and inexpensive method for identification of gene function during neural development. Genome wide analysis of differentially expressed transcripts after such an experimental manipulation has the potential to uncover an almost complete picture of the downstream effects caused by the transfected construct. This work describes a simple meth...
متن کاملOptical analysis of depolarization waves in the embryonic brain: a dual network of gap junctions and chemical synapses.
Correlated neuronal activity plays a fundamental role in the development of the CNS. Using a multiple-site optical recording technique with a voltage-sensitive dye, we previously described a novel type of depolarization wave that was evoked by cranial or spinal nerve stimulation and spread widely over the whole brain region in the chick embryo. We have now investigated developmental expression ...
متن کاملInduction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog
Recent evidence indicates that oligodendrocytes originate initially from the ventral neural tube. We have documented in chick embryos the effect of early ventralization of the dorsal neural tube on oligodendrocyte differentiation. Notochord or floor plate grafted at stage 10 in dorsal position induced the development of oligodendrocyte precursors in the dorsal spinal cord. In vitro, oligodendro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1999